Однако, в отношении катушек там указаны только номера (см. перечень элементов на листе 35). Этой информации было бы достаточно при работе с этим передатчиком на предприятии-изготовителе, т.к. эти номера позволяют быстро и однозначно получить необходимую документацию на катушки. Но мне неизвестно, выложена ли эта информация в открытом доступе. В принципе, Вы можете обратиться с соответствующим запросом в "Российские космические системы" по адресу contact@spacecorp.ru и попросить их обнародовать эту информацию. Там, конечно, хватает дел и без этого, но кто знает -- может быть, они пойдут навстречу. В этом случае, пожалуйста, проинформируйте об этом, выложив здесь соответствующее сообщение.
В интернете кстати широко распространен миф, что передатчик первого ИСЗ был на стержневых лампах. Лампы 2П19Б не являются таковыми и имеют классические витые сетки.
Спасибо, Александра Ивановна, Виктор Михайлович! Лаборатория космических исследований, действительно, с самого рождения Соляриса оказывала нам реальную поддержку. Небесные тела двигаются по сложным орбитам, иногда - с большим эксцентриситетом. Они отдаляются и вновь сближаются. Главное, что они - в едином Космосе!
15 лет - это действительно реальное подтверждение "живучести" и жизнестойкости задуманной Идеи. Это, несомненно, заслуга бессменного научного руководителя ИТГ "Солярис" - Ильи Петровича Иванова. Да, были сотни дипломов, награждений различного уровня. Но это значимый показатель для необходимых официальных отчетов. Главное, что "Солярис" показал иной путь познания мира. Лаборатория космических исследований УлГУ практически с начала основания "Соляриса" была рядом или удалялась на некоторое расстояние. За 15 лет отношение колебалось от активной поддержки до некоторого непонимания и даже прохладного отношения. Но целеустремленность, упорство и вера в свою Идею руководителя доказали, что выбранный 15 лет назад путь оказался логичным и гармоничным.
Уважаемый Илья Петрович, поздравляем Вас с Днем рождения! Так символично, что Вы родились именно в День Знаний. Новых идей, талантливых учеников, открытий и достижения Цели, которой Вы посвятили свою жизнь. С искренним уважением к Вашей деятельности, лаборатория космических исследований УлГУ.
Специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения (НПО) «Энергомаш» провела испытания первых в мире полноразмерных демонстраторов технологий детонационного жидкостного ракетного двигателя. Новый двигатель, в отличие от других силовых установок, работающих по принципу внутреннего сгорания, функционирует за счет детонации топлива. Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствует компрессор и многие движущиеся части.
Как сообщает ТАСС , новые силовые установки работают на топливной паре кислород-керосин.
Детонацией называется сверхзвуковое горение какого-либо вещества, в данном случае топливной смеси. При этом по смеси распространяется ударная волна, за которой следует химическая реакция с выделением большого количества тепла.
Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Первые такие работы начались еще в Германии в 1940-х годах. Правда тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускалисьпульсирующие воздушно-реактивные двигатели.
Они ставились на ракеты «Фау-1».
Рис.1. ПуВРД
В пульсирующих воздушно-реактивных двигателях топливо сгорало с дозвуковой скоростью. Такое горение называется дефлаграцией. Пульсирующим двигатель называется потому, что в его камеру сгорания топливо и окислитель подавались небольшими порциями через равные промежутки времени.
Рис.2. Карта давления в камере сгорания ротационного детонационного двигателя. A - детонационная волна; B - задний фронт ударной волны; C - зона смешения свежих и старых продуктов горения; D - область заполнения топливной смесью; E - область несдетонировавшей сгоревшей топливной смеси; F - зона расширения со сдетонировавшей сгоревшей топливной смесью NRL
Детонационные двигатели сегодня делятся на два основных типа: импульсные и ротационные. Последние еще называют спиновыми. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания. В ротационных детонационных двигателях используется кольцевая камера сгорания, в которой топливная смесь подаётся последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает - детонационная волна «обегает» кольцевую камеру сгорания, топливная смесь за ней успевает обновиться. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.
Детонационные двигатели способны работать в широком пределе скоростей полета - от нуля до пяти чисел Маха (0-6,2 тысячи километров в час).
Рис.3.
Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствует компрессор и многие движущиеся части.
Практические работы по созданию ротационного детонационного двигателя ведутся и в США Научно-исследовательской лабораторией ВМС с 2008 года. Американские военные намерены использовать такие силовые установки на надводных кораблях вместо традиционных газотурбинных двигателей. Их преимуществом является высокая выдаваемая мощность при компактных размерах.
Благодаря установке новых двигателей на корабли ВМС США рассчитывают высвободить больше места на них, а также повысить эффективность энергетических систем. Сегодня в состав американский флот использует 430 газотурбинных двигателей на 129 кораблях. Ежегодно эти силовые установки потребляют топлива почти на три миллиарда долларов.
В американском ротационном детонационном двигателе используется стехиометрическая смесь водорода и воздуха. Стехиометрической называется такая топливная смесь, в которой окислителя содержится ровно столько, сколько необходимо для полного сгорания горючего. Смесь водорода и кислорода считается наиболее удобной для изучения спиновой, незатухающей, детонации.
Очередная заплатка на идее химических ракетных двигателей, уже давно подошедших к своему пределу... Нужно искать новые идеи.
Вопросы. 1) На рисунке 2 детонация распространяется слева - направо или справа - налево? Стрелка, вроде, показывает слева - направо. Но, почему тогда зона B (задний фронт ударной волны) - выше и правее детонационной волны A? А зона F сдетонировавшей смеси - тоже выше и правее зоны E несдетонировавшей смеси? 2) На рисунке 3 - где область детонационных ракетных двигателей? 3) "детонационная волна «обегает» кольцевую камеру сгорания, топливная смесь за ней успевает обновиться", "конструкция детонационных двигателей относительно проста: в них отсутствует компрессор и многие движущиеся части". Как можно обновить топливную смесь без компрессора?